Load Balancing Approach Parallel Algorithm for Frequent Pattern Mining
نویسندگان
چکیده
Association rules mining from transaction-oriented databases is an important issue in data mining. Frequent pattern is crucial for association rules generation, time series analysis, classification, etc. There are two categories of algorithms that had been proposed, candidate set generate-and-test approach (Apriori-like) and Pattern growth approach. Many methods had been proposed to solve the association rules mining problem based on FP-tree instead of Apriori-like, since apriori-like algorithm scans the database many times. However, the computation time is costly when the database size is large with FP-tree data structure. Parallel and distributed computing is a good strategy to solve this circumstance. Some parallel algorithms had been proposed, however, most of them did not consider the load balancing issue. In this paper, we proposed a parallel and distributed mining algorithm based on FP-tree structure, Load Balancing FP-Tree (LFP-tree). The algorithm divides the item set for mining by evaluating the tree’s width and depth. Moreover, a simple and trusty calculate formulation for loading degree is proposed. The experimental results show that LFP-tree can reduce the computation time and has less idle time compared with Parallel FP-Tree (PFP-tree). In addition, it has better speed-up ratio than PFP-tree when number of processors grow. The communication time can be reduced by preserving the heavy loading items in their local computing node.
منابع مشابه
A New Approach for Frequent Itemset Data Mining in Hadoop Environment
Frequent pattern mining is an essential data mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. In...
متن کاملAn Improved Technique Of Extracting Frequent Itemsets From Massive Data Using MapReduce
The mining of frequent itemsets is a basic and essential work in many data mining applications. Frequent itemsets extraction with frequent pattern and rules boosts the applications like Association rule mining, co-relations also in product sale and marketing. In extraction process of frequent itemsets there are number of algorithms used Like FP-growth,E-clat etc. But unfortunately these algorit...
متن کاملBig Data Frequent Pattern Mining
Frequent pattern mining is an essential data mining task, with a goal of discovering knowledge in the form of repeated patterns. Many efficient pattern mining algorithms have been discovered in the last two decades, yet most do not scale to the type of data we are presented with today, the so-called “Big Data”. Scalable parallel algorithms hold the key to solving the problem in this context. In...
متن کاملA New Load Balancing Approach for Parallel FP-Growth
Due to the exponential growth in worldwide information, companies have to deal with an ever growing amount of digital information. So the huge size of data and computation volume of new processing applications such as data mining, leads to new high performance parallel processing systems. One of the most important challenges of such application is quickly and correctly finding the relationship ...
متن کاملParallel Rule Mining with Dynamic Data Distribution under Heterogeneous Cluster Environment
Big data mining methods supports knowledge discovery on high scalable, high volume and high velocity data elements. The cloud computing environment provides computational and storage resources for the big data mining process. Hadoop is a widely used parallel and distributed computing platform for big data analysis and manages the homogeneous and heterogeneous computing models. The MapReduce fra...
متن کامل